Medical X-ray Imaging

Medical imaging has led to improvements in the diagnosis and treatment of numerous medical conditions in children and adults.

There are many types - or modalities - of medical imaging procedures, each of which uses different technologies and techniques. Computed tomography (CT), fluoroscopy, and radiography ("conventional X-ray" including mammography) all use ionizing radiation to generate images of the body. Ionizing radiation is a form of radiation that has enough energy to potentially cause damage to DNA and may elevate a person's lifetime risk of developing cancer.

CT, radiography, and fluoroscopy all work on the same basic principle: an X-ray beam is passed through the body where a portion of the X-rays are either absorbed or scattered by the internal structures, and the remaining X-ray pattern is transmitted to a detector (e.g., film or a computer screen) for recording or further processing by a computer. These exams differ in their purpose:

Benefits - Risks

Benefits

The discovery of X-rays and the invention of CT represented major advances in medicine. X-ray imaging exams are recognized as a valuable medical tool for a wide variety of examinations and procedures. They are used to:

Risks

As in many aspects of medicine, there are risks associated with the use of X-ray imaging, which uses ionizing radiation to generate images of the body. Ionizing radiation is a form of radiation that has enough energy to potentially cause damage to DNA. Risks from exposure to ionizing radiation include:

Another risk of X-ray imaging is possible reactions associated with an intravenously injected contrast agent, or "dye", that is sometimes used to improve visualization.

The risk of developing cancer from medical imaging radiation exposure is generally very small, and it depends on:

The above statements are generalizations based on scientific analyses of large population data sets, such as survivors exposed to radiation from the atomic bomb. One of the reports of such analyses is Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2 (Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council). While specific individuals or cases may not fit into such generalizations, they are still useful in developing an overall approach to medical imaging radiation safety by identifying probable at-risk populations or higher-risk procedures.

Because radiation risks are dependent on exposure to radiation, an awareness of the typical radiation exposures involved in different imaging exams is useful for communication between the physician and patient. (For a comparison of radiation doses associated with different imaging procedures see: Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog)

The medical community has emphasized radiation dose reduction in CT because of the relatively high radiation dose for CT exams (as compared to radiography) and their increased use, as reported in the National Council on Radiation Protection and Measurements (NCRP) Report No. 160. Because tissue effects are extremely rare for typical use of many X-ray imaging devices (including CT), the primary radiation risk concern for most imaging studies is cancer; however, the long exposure times needed for complex interventional fluoroscopy exams and resulting high skin doses may result in tissue effects, even when the equipment is used appropriately. For more information about risks associated with particular types of X-ray imaging studies, please see the CT, Fluoroscopy, Radiography, and Mammography web pages.

Balancing benefits and risks

While the benefit of a clinically appropriate X-ray imaging exam generally far outweighs the risk, efforts should be made to minimize this risk by reducing unnecessary exposure to ionizing radiation. To help reduce risk to the patient, all exams using ionizing radiation should be performed only when necessary to answer a medical question, treat a disease, or guide a procedure. If there is a medical need for a particular imaging procedure and other exams using no or less radiation are less appropriate, then the benefits exceed the risks, and radiation risk considerations should not influence the physician's decision to perform the study or the patient's decision to have the procedure. However, the "As Low as Reasonably Achievable" (ALARA) principle should be followed when choosing equipment settings to minimize radiation exposure to the patient.

Patient factors are important to consider in this balance of benefits and risks. For example:

Information for Patients

X-ray imaging (CT, fluoroscopy, and radiography) exams should be performed only after careful consideration of the patient's health needs. They should be performed only when the referring healthcare provider judges them to be necessary to answer a clinical question or to guide treatment of a disease. The clinical benefit of a medically appropriate X-ray imaging exam outweighs the small radiation risk. However, efforts should be made to help minimize this risk.

Questions to ask your health care provider

Patients and parents of children undergoing X-ray imaging exams should be well informed and prepared by: